
TECHNICAL NOTES AND SHORT PAPERS 

Estimation of the Successive Over-Relaxation 
Factor 

By A. K. Rigler 

1. Introduction. Successive over-relaxation and its several variants are well- 
known methods for solving finite difference equations of elliptic type. To obtain the 
greatest rate of convergence one must know the spectral radius p of the basic simul- 
taneous displacement iteration matrix. It is also well known (see Varga [5], for 
example) that using a value slightly larger than p is less serious than using an esti- 
mate too small by the same amount. 

In obtaining an estimate of p, one is willing to expend some small fraction of the 
total computing time required to solve a set of difference equations. If too little at- 
tention is given to the estimate of p, the convergence rate suffers; if too much 
effort is spent on estimating p, it will not be recovered in the improved convergence 
rate in the main calculation. 

It is the purpose of this paper to show how the Kohn-Kato formula for an upper 
bound of an eigenvalue (see Crandall [1]) is especially well suited for use in the 
estimation of p for successive over-relaxation. 

2. The Kohn-Kato Formula. The following discussion assumes that the matrix Q 
is symmetric with non-negative eigenvalues. The Kohn-Kato theorem is presented 
here in the particular context of estimating the spectral radius of Q, although it is 
much more general. 

Let the eigenvalues of Q be 

? _< X~n -< Xn-1 = < XA2 < XA1 cp, 

and x be any vector. Let (x, y) denote the inner product of the vectors x and y. 
Define 

= (xI x) (Qx, Qx) 2 (Qx - 'Yx, Qx - 'Yx) 
Y (X, X) '(X, QX) ' -(x, x) 

and 

2 

(1) y~~~~~~AW = 7 + 
ly -a 

where a is an arbitrary number greater than X2. Then the Kohn-Kato theorem 
states that ,u _ p whenever y > a. 

Now suppose that x is an approximation to the dominant eigenvector of Q. Then 
a is probably the most commonly used quantity as an estimate for p. Unfortunately, 
the extremal property of p assures that a < p; that is, a lies on the more sensitive 
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side of p. If, instead, (4a) is used with X2 < a < y, then the Kohn-Kato theorem 
asserts that us(a) _ p. 

It might appear that the use of Eq. (1) to estimate p simply shifts the problem 
to that of estimating X2, a much more difficult task to carry out accurately. How- 
ever, only a crude estimate of X2 will do. Moreover, any positive a < X2 will make 
, larger than a. This follows from the observation that MA(O) = a and MA(a) is mono- 
tone increasing in 0 < a < y. 

Thus, given an approximation to the dominant eigenvector x and an estimate 
a of 2, then one of the three following cases holds: 

(a) x is exactly the dominant eigenvector and A = a = y = p. 
(b) g ? p. The error is on the less sensitive side of p. 
(c) a ? ,u _ p. The error is on the more sensitive side of p but an improvement 

over the more conventional modified Rayleigh quotient cr. 
It is interesting to note that if x were a linear combination of only two eigenveptors, 
those corresponding to p and N2 , and if a = X2 , then = p. 

It is possible, of course, that a poor choice of a will cause IA(a) to be much larger 
than p. However, when x is a reasonably accurate approximation to the dominant 
eigenvector and a is the best current estimate of 2, then uH(a) will be quite close to 
P. 

When the power method or a polynomial acceleration of the power method is 
used to construct the approximate eigenvector, 4(a) requires no appreciable in- 
crease of computing time over a. The current values of (Qx, Qx) and (x, Qx) are 
needed for both, and (x, x) has already been calculated for the previous iterate. 

3. Computational Technique. This method of estimating p is easily adapted 
for use with the cyclic Chebyshev variant of successive over-relaxation presented 
by Golub and Varga [2]. A brief description follows: 

The synunetric algebraic equations to be solved are written in the partitioned 
matrix form 

F-B D2B] [2] [k2] 

The cyclic Chebyshev iteration is 

DA "'(2m+l) = ki + B(02(2m) 

(2a (2m+) _ (2m-1) 
B 

2 (2m+1) - (2m-1) 
(2m+2) ( 2m+1 ) 

(2b) V = k2 + BtX(m+1), 
(2m+2) (2m) r ̂  (2m+2) (2m) 1 > 0 zU2~ ~ W U 2m?21(?2 - 'p2]J, m?=0. 

The extrapolation factors wj are elements of the sequence 

=I 1, 

2 
W.2 

(3) 2 
1 

Wj+1 - 2 ) > 2 

4 
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where q, 0 < q < 1, is an estimate of the spectral radius p of the matrix 

0 D1 1B 

D2'Bt 0 j 

From the form of this matrix it follows that p2 is the spectral radius of H = 

D2lBtD1-1B, a matrix similar to a symmetric matric and of smaller dimension than 
the original. 

To calculate the spectral radius of H by the "power method," one can set 
= 0, ki = 0, and k2 = 0 in the iteration (2a, 2b) and (3). The initial vector 

V2(?) is an arbitrary nonzero vector. The result is a sequence of vectors O2 (2m) con- 
verging to the dominant eigenvector of H. The quantities y and f were defined in 
terms of a symmetric matrix Q = D2112HD2-12. Application of this transformation 
and some algebraic manipulation produces sequences y2m and 4$ defined in terms 
of inner products of vectors already available in the iteration (2b). These redefined 
quantities are 

(0(2?)) Bt I(2m+i)) 

(4) 72m = (M-j 

and 
2 (V 

(2m+2) Bt I (2m) 
2 

(5) i 1 2 
(5) 62m = z22~~~-(2MY (2m' 2) - 72m 

(022 X Btzol ) 

A rough estimate of X2 to be used as the parameter a may be computed from 
Eq. (5) in a manner proposed by Varga [4], 

(2m) i (2in-1) ) 2 

a6 X 2 em 0i2 ) B (01 )2m 
V 6 J A~~~~~42 ( 2in-2) - Bt ( 2m-) 

t4Q2 (0 Bal }2m-2 

4. Two Examples. The first example is taken from A realistic problem; that of 
solving the biharmonic problem on a square with boundary values prescribed for 
the solution and its normal derivative. A uniform mesh of 900 unknown points was 
used and the difference equations were solved by the two line cyclic Chebyshev 
method, see Griffin and Varga [31. 

Estimates of p were formed as described in ?3. The results are shown graphi- 
cally in Figure 1.* To illustrate the effect of a on the estimate, several values were 
arbitrarily chosen instead of a single value such as from Eq. (6). Of course, any 
acceleration of the eigenvector calculation will produce a corresponding improve- 
ment in each of the curves of Figure 1. 

To illustrate the sensitivity of the convergence rate to an accurate value of p 
and the effectiveness of this method in obtaining an adequate approximation, the 
biharmonic problem described above was solved four times. After 25 iterates of the 
power method (see Figure 1), M was computed for three values of a and used as the 
acceleration parameter. The optimum value p was found by experiment. The results 
appear in Table 1. 

* From a doctoral thesis submitted to the University of Pittsburgh. 
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TABLE 1 

Acceleration Number of 
Parameter Iterations 

((0) - .9960 334 
i(.97) .9978 263 
PI .9985 117 
,A(.98) .9992 193 

The second example is derived from the finite difference approximation of the 
Dirichlet problem in a square with a uniform mesh of 16 points. The method of 
solution is the pointwise cyclic Chebyshev method. The purpose of the second 
example is for comparison between the Kohn-Kato formula, Eq. (1), and another 
enclosure theorem sometimes used for the same purpose. 

This enclosure theorem, due to Collatz [1], states that an eigenvalue Xj lies in 
the interval 

(7) nmm (Qx) < Xi _m max (QX)X j = l, 2, . **, n, 

where (x) denotes the ith component of the vector x. Furthermore, the theory of 
non-negative matrices [5] gives the more rigorous result that if x has positive com- 
ponents and Q has non-negative elements than the interval (7) contains the spec- 
tral radius p. The matrix of example 1 does not have this property. As Crandall [1] 
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TABLE 2 

Xo X1 X2 

1 9 93 
1 6 58 
1 9 93 
1 14 150 
1 14 150 
1 9 93 
1 6 58 
1 9 93 

points out, the Rayleigh quotient, and the formula, Eq. (1), for /A are of secojid- 
order accuracy when the eigenvector approximation is of only first-order accuracy. 
This property is well illustrated in the example. 

The matrix of interest is 

3 1 2 2 1 
1 2 2 1 
2 3 1 2 1 
2 2 1 4 2 2 1 
1 2 2 4 1 2 2. 

1 2 1 3 2 
1 2 2 1 

1 2 2 1 3 

An initial guess for the dominant eigenvector and two successive power iterates 
appears in Table 2. 

The following quantities are calculated from Table 2. 

ax, 10.4619289, 

al 10.4711305, 

2 .09626686, 

X2 1.07, 

A(1.07) = 10.47221, 

min = 9.666666, 
(xi) 

(X2)i 
max = 10.71428. 

i (Xi)i 

If several more iterates are computed one finds that the correct value of the 
spectral radius is 

p 10.47214. 

5. Summary. The proposed method for estimating the spectral radius p of a 
real symmetric matrix is particularly useful when, first, an eigenvector of mediocre 
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accuracy is available (perhaps from a few iterates of the power method); second, 
when an over-estimate is preferred to an under-estimate; and third, when no further 
improvement of the eigenvector is contemplated. These conditions are found in 
the problem of computing the optimum successive over-relaxation parameter. 

No cases have been found for which o- gives a faster convergence rate than ,(a) 
for any reasonable value of a. Dangers of many kinds exist for slowly convergent 
problems but this particular one has not been observed. Furthermore, any increase 
in convergence rate gained by use of this method reduces the likelihood that the 
sequence (2a, 2b) and (3) will be terminated by a false convergence indication. 
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A Practical Application of Block Diagonally 
Dominant Matrices 

By H. S. Price 

Introduction. In this note the concept of block diagonally dominant matrices 
(see references [3], [4], [5]) is applied to a problem from electromagnetic theory. 
The actual problem considered here is to find the vector potential P(r, z), induced 
in a piecewise homogeneous, axially symmetric, infinite region Q, by a current loop 
of radius rt located at z - 0. Using MJaxwell's first two equations (see references 
[6], [7]), it can be shown that P(r, z) satisfies the following differential equation: 

(1) 1 d ( OP(r, z) + (k2( ) l P(r, z) 0 (r, z) E&U. 
r ar Or az r2 

The complex-valued function k2(r, z) is given by 

(2) k2 _ e(r, z)1u(r, Z)W2 - iM(r, z)oa(r, z)w = a(r, z) - i,3(r, z), 

where /u is the permeability, o- the conductivity, e the inductive capacity, and X 

is the angular frequency. At the source, for a current loop of radius rt whose plane 
is normal to the z-axis and whose center is located at the origin, we have 
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